skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crossfield, Ian_J_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The elemental and isotopic abundances of volatiles like carbon, oxygen, and nitrogen may trace a planet’s formation location relative to H2O, CO2, CO, NH3, and N2“snowlines,” or the distance from the star at which these volatile elements sublimate. By comparing the C/O and12C/13C ratios measured in giant exoplanet atmospheres to complementary measurements of their host stars, we can determine whether the planet inherited stellar abundances from formation inside the volatile snowlines, or nonstellar C/O and13C enrichment characteristic of formation beyond the snowlines. To date, there are still only a handful of exoplanet systems where we can make a direct comparison of elemental and isotopic CNO abundances between an exoplanet and its host star. Here, we present a12C/13C abundance analysis for host star WASP-77A (whose hot Jupiter’s12C/13C abundance was recently measured). We use MARCS stellar atmosphere models and the radiative transfer code TurboSpectrum to generate synthetic stellar spectra for isotopic abundance calculations. We find a12C/13C ratio of 51 ± 6 for WASP-77A, which is subsolar (∼91) but may still indicate13C enrichment in its companion planet WASP-77A b (12C/13C = 26 ± 16, previously reported). Together with the inventory of carbon and oxygen abundances in both the host and companion planet, these chemical constraints point to WASP-77A b’s formation beyond the H2O and CO2snowlines and provide chemical evidence for the planet’s migration to its current location ∼0.024 au from its host star. 
    more » « less
  2. Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M= 1.10 ± 0.10M,R=1.17 ± 0.12R). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23Rand a mass measurement ofMp= 9.6 ± 3.9M). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet. 
    more » « less